A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit
نویسندگان
چکیده
MADS-box genes have been shown to play a role in the formation of fruits, both in Arabidopsis and in tomato. In peach, two C-class MADS-box genes have been isolated. Both of them are expressed during flower and mesocarp development. Here a detailed analysis of a gene that belongs to the PLENA subfamily of MADS-box genes is shown. The expression of this PLENA-like gene (PpPLENA) increases during fruit ripening, and its ectopic expression in tomato plants causes the transformation of sepals into carpel-like structures that become fleshy and ripen like real fruits. Interestingly, the transgenic berries constitutively expressing the PpPLENA gene show an accelerated ripening, as judged by the expression of genes that are important for tomato fruit ripening. It is suggested that PpPLENA might interfere with the endogenous activity of TAGL1, thereby activating the fruit ripening pathway earlier compared with wild-type tomato plants.
منابع مشابه
Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation.
The fruit canning industry processes large quantities of the clingstone varieties of peach (Prunus persica L. Batch). The occurrence of split-pit formation--the opening of the pit and sometimes splitting of the fruit--causes deterioration of canned fruit quality. The frequency of split-pit formation is influenced by genetic and environmental factors. To increase understanding of the molecular m...
متن کاملGymnosperm B-sister genes may be involved in ovule/seed development and, in some species, in the growth of fleshy fruit-like structures.
BACKGROUND AND AIMS The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a fu...
متن کاملMolecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits.
Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Suc...
متن کاملThe study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be sus...
متن کاملCharacterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.
MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Experimental Botany
دوره 60 شماره
صفحات -
تاریخ انتشار 2009